Prédiction de performance d'algorithmes de traitement d'images sur différentes architectures hardwares. (Image processing algorithm performance prediction on different hardware architectures)

نویسنده

  • Nicolas Soucies
چکیده

In computer vision, the choice of a computing architecture is becoming more difficult for image processing experts. Indeed, the number of architectures allowing the computation of image processing algorithms is increasing. Moreover, the number of computer vision applications constrained by computing capacity, power consumption and size is increasing. Furthermore, selecting an hardware architecture, as CPU, GPU or FPGA is also an important issue when considering computer vision applications. The main goal of this study is to predict the system performance in the beginning of a computer vision project. Indeed, for a manufacturer or even a researcher, selecting the computing architecture should be done as soon as possible to minimize the impact on development. A large variety of methods and tools has been developed to predict the performance of computing systems. However, they do not cover a specific area and they cannot predict the performance without analyzing the code or making some benchmarks on architectures. In this works, we specially focus on the prediction of the performance of computer vision algorithms without the need for benchmarking. This allows splitting the image processing algorithms in primitive blocks. In this context, a new paradigm based on splitting every image processing algorithms in primitive blocks has been developed. Furthermore, we propose a method to model the primitive blocks according to the software and hardware parameters. The decomposition in primitive blocks and their modeling was demonstrated to be possible. Herein, the performed experiences, on different architectures, with real data, using algorithms as convolution and wavelets validated the proposed paradigm. This approach is a first step towards the development of a tool allowing to help choosing hardware architecture and optimizing image processing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preprint / Prétirage On The Hausdorff Distance Used For The Evaluation Of Segmentation Results

Les techniques de segmentation d'images sont largement utilisées en télédétection, comme le démontre leur présence dans la plupart des systèmes commerciaux de traitement d'images. Un effort considérable a été consacré au développement d'algorithmes de segmentation, résultant en une profusion de techniques différentes. En comparaison, le nombre d'outils développés pour l'évaluation quantitative ...

متن کامل

Pipelining the Fast Multipole Method over a Runtime System

Fast Multipole Methods (FMM) are a fundamental operation for the simulation of many physical problems. The high performance design of such methods usually requires to carefully tune the algorithm for both the targeted physics and the hardware. In this paper, we propose a new approach that achieves high performance across architectures. Our method consists of expressing the FMM algorithm as a ta...

متن کامل

Image denoising based on the edge-process model

In this paper a novel stochastic image model in the transform domain is presented and its performance in image denoising application is experimentally validated. The proposed model exploits local subband image statistics and is based on geometrical priors. Contrarily to models based on local correlations, or mixture models, the proposed model performs a partition of the image into non-overlappi...

متن کامل

Checkpointing algorithms and fault prediction

This paper deals with the impact of fault prediction techniques on checkpointing strategies. We extend the classical first-order analysis of Young and Daly in the presence of a fault prediction system, characterized by its recall and its precision. In this framework, we provide an optimal algorithm to decide when to take predictions into account, and we derive the optimal value of the checkpoin...

متن کامل

Using Runtime Systems Tools to Implement Efficient Preconditioners for Heterogeneous Architectures

Solving large sparse linear systems is a time-consuming step in basin modeling or reservoir simulation. The choice of a robust preconditioner strongly impact the performance of the overall simulation. Heterogeneous architectures based on General Purpose computing on Graphic Processing Units (GPGPU) or many-core architectures introduce programming challenges which can be managed in a transparent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015